Remember that with the sine and cosine functions the period = $\frac{2\pi}{b}$ where b is the coefficient of the rgument.

The constant c in the general equations $y = a \sin(bx - c)$ and $y = a \cos(bx - c)$ creates horizontal translations (shifts) of the basic sine and cosine curves.

The period of $y = a\sin(bx - c)$ is $\frac{2\pi}{b}$, and the graph of $y = a\sin bx$ is shifted by an amount $\frac{c}{b}$. The number $\frac{c}{b}$ is called the phase Shift.

Graphs of Sine and Cosine Functions

The graphs of $y = a\sin(bx - c)$ and $y = a\cos(bx - c)$ have the following characteristics.

(Assume b > 0.)

Amplitude =
$$|a|$$
 Period = $\frac{2\pi}{b}$

The left and right endpoints of one-cycle interval can be determined by solving the equations bx-c=0 and $bx-c=2\pi$.

Horizontal Translations

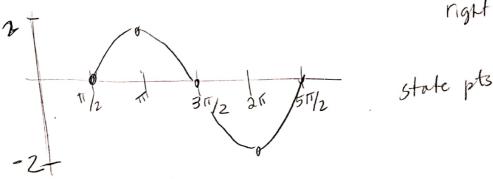
Ex:4 a.) Sketch the graph of $y = 2\sin\left(x - \frac{\pi}{2}\right)$ for one full cycle of output values (one period).

Label the key points on the graph.

$$Amp = 2 Per = 2\pi$$

Phase Shift =
$$\frac{11}{2}$$

Phase Shift = $\frac{T}{2}$ left endpt $\frac{T}{2}$ $right endpt = \frac{ST}{2}$

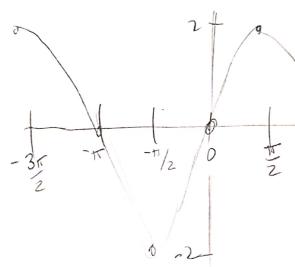


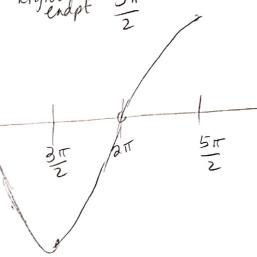
b.) Sketch the graph of $y = 2\cos\left(x - \frac{\pi}{2}\right)$ for two full cycles of output values (two periods).

Label the key points on the graph.

$$Amp = 2$$

Per =
$$2\pi$$





Ex:5 a.) State the amplitude, period and the phase shift of $y = 2\sin(3\pi x - 2\pi)$

$$\Delta$$
mp = 2

Per =
$$\frac{2\pi}{3\pi}$$
 = $\frac{2}{3}$

Phase Shift =
$$\frac{2\pi}{3\pi} = \frac{2}{3}$$
 = left endpt $\frac{4}{3}$ = 115 lt endpt

b.) State the amplitude, period, and the phase shift of $y = -3\cos(2\pi x + 4\pi)$

Per =
$$\frac{2\pi}{2\pi}$$
 = 1

Phase Shift =
$$-\frac{4\pi}{2\pi} = -2$$
 = left endpt
-1 = right endpt

reflect over

translation caused by the constant d in the equations

$$y = d + a\sin(bx - c)$$

$$0 \le 10 (b \times -c) + d$$

and

$$y = d + a\cos(bx - c)$$
.
 $a < 0 \le (b \times -c) + d$

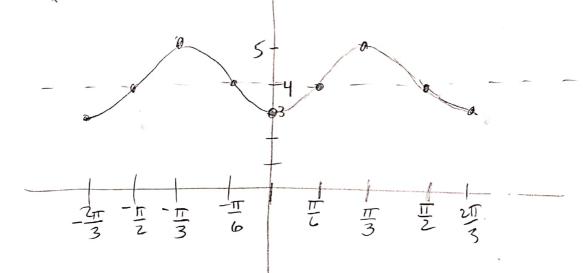
The shift d units up for d > 0 and d units down for d < 0. In other words, the graph oscillates about the horizontal line y = d instead of about the x-axis.

Vertical Translations $y = -\cos 3x + 4$ Ex:6 Sketch the graph of $y = 4 - \cos 3x$ for two full cycles of output values (two periods). Phase Shift = Vertical Shift = \forall

Label the key points on the graph.

reflect over

Amp =



$$\left(-\frac{2\pi}{3},3\right)\left(-\frac{\pi}{5},4\right)\left(-\frac{\pi}{3},5\right)\left(-\frac{\pi}{6},4\right)\left(0,3\right)$$

$$\left(\begin{smallmatrix} \Box \\ 0 \end{smallmatrix}, 4\right) \left(\begin{smallmatrix} \Box \\ \overline{3} \end{smallmatrix}, 5\right) \left(\begin{smallmatrix} \Box \\ \overline{2} \end{smallmatrix}, 4\right) \left(\begin{smallmatrix} 2\pi \\ \overline{3} \end{smallmatrix}, 3\right)$$